Response of Plant and Soil N, P, and N:P Stoichiometry to N Addition in China: A Meta-Analysis

Author:

Chen Shuifei1ORCID,Zhang Wenwen1,Ge Xiaomin1,Zheng Xiao1,Zhou Xu1,Ding Hui1,Zhang Aiguo1

Affiliation:

1. Nanjing Institute of Environmental Sciences, State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Ministry of Ecology and Environment of China, Nanjing 210042, China

Abstract

Nitrogen (N) and phosphorus (P) are key elements essential for plant growth and development. Due to fertilizer application, rapid urbanization, and fossil fuel combustion, nitrogen deposition has reached relatively high levels in China. However, there is still uncertainty regarding the response of N:P stoichiometry in plants and soil to N deposition across different ecosystems. Therefore, a meta-analysis was conducted using 845 observations from 75 studies to evaluate the response of plant and soil N and P concentrations and N to P ratios across various ecosystems to N addition. The analysis revealed that N concentration and N:P stoichiometry in plants and soil increased under N addition, while P concentration in plants and soil decreased on average. Furthermore, the magnitude of these responses was related to the N input rate and experimental duration. Finally, the effects of N addition on N concentration, P concentration, and N:P in terrestrial ecosystems would alter their allocation patterns, depending on relevant climate factors such as mean annual temperature and mean annual precipitation. This study highlights the ecological impact of N addition on the biogeochemical cycling of major elements (N and P) in terrestrial ecosystems in China. These findings are necessary for improving our understanding of the characteristics of plant ecological stoichiometry and helping to plan measures for increasing N deposition.

Funder

Ministry of Ecology and Environment of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3