Allelopathic Effect of Aqueous Extracts of Grass Genotypes on Eruca Sativa L.

Author:

Motalebnejad Masoud1,Karimmojeni Hassan1,Majidi Mohammad Mahdi1,Mastinu Andrea2ORCID

Affiliation:

1. Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran

2. Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy

Abstract

The aim of the current research is to evaluate the allelopathic activity of fifty grass genotypes from different species and to identify phenolic compounds in the genotypes that have the highest allelopathic activity and inhibitory effect on Eruca sativa L. (Rocket). Aqueous extract was prepared from the leaves of grass genotypes in different concentrations and its effect on germination and growth of E. sativa L. was measured. According to the results, the type of genotype and the concentration of the extract significantly decreased the percentage of germination, hypocotyl length, radicle length, and dry weight of E. sativa L. seedlings. Increasing the concentration of the extract resulted in a decrease in germination and growth of seedlings. The genotypes of Festulolium (Festulolium) (GR 5009, GR 1692, GR 5004) had the most inhibitory effect on the growth of E. sativa L. Also, among the genotypes studied, two genotypes (DG-M) and (DG-P) of Dactylis glomerata L. (orchardgrass) species showed the least allelopathic activity. The results of HPLC-MS indicated nine phenolic compounds including caffeic acid, syringic acid, vanillic acid, p-coumaric acid, ferulic acid, apigenin acid, chlorogenic acid, 4-hydroxybenzoic acid, and gallic acid. The phenolic compound most present in the aqueous extract was caffeic acid. However, phenolic compounds derived from Festulolium genotypes showed the greatest allelopathic action on the growth parameters of E. sativa L. The aqueous extracts of the Festulolium genotypes can be considered valid systems of sustainable weed control thanks to the phytocomplex rich in phenols.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3