Productivity and Phytochemicals of Asclepias curassavica in Response to Compost and Silver Nanoparticles Application: HPLC Analysis and Antibacterial Activity of Extracts

Author:

El-Hefny Mervat1ORCID,Mohamed Abeer A.2,Abdelkhalek Ahmed3ORCID,Salem Mohamed Z. M.4ORCID

Affiliation:

1. Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt

2. Plant Pathology Institute, Agricultural Research Center (ARC), Alexandria 21616, Egypt

3. Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt

4. Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt

Abstract

The application of compost and metallic nanoparticles has a significant impact on the productivity and chemical composition of horticulture plants. In two subsequent growing seasons, 2020 and 2021, the productivity of Asclepias curassavica L. plants treated with various concentrations of silver nanoparticles (AgNPs) and compost was assessed. In the pot experiments, the soil was amended with 25% or 50% compost, and the plants were sprayed with 10, 20, and 30 mg/L of AgNPs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and dynamic light scattering (DLS) were used to characterize AgNPs. The TEM measurements of AgNPs showed that the particles had spherical forms and ranged in size from roughly 5 to 16 nm. Leaf methanol extracts (LMEs) were prepared from the treated plants and assayed against the growth of two soft rot bacteria, Dickeya solani and Pectobacterium atrosepticum. The maximum plant height, diameter, number of branches/plant, total fresh weight (g), total dry weight (g), and leaf area (cm2) was recorded when levels of 25% compost + AgNPs 20 mg/L, 25% compost, or 50% + AgNPs 20 mg/L, 25% compost + AgNPs 30 mg/L or 50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 30 or 20 mg/L, and 25% compost + AgNPs 30 mg/L, respectively, were applied. The plants treated with 25% or 50% compost + 30 mg/L AgNPs showed a high chlorophyll content, while the plants treated with 50% compost + AgNPs 30 mg/L or 20 mg/L showed the highest extract percentages. The highest inhibition zones (IZs), 2.43 and 2.2 cm, against the growth of D. solani were observed in the LMEs (4000 mg/L) extracted from the plants treated with compost (v/v) + AgNPs (mg/L) at the levels of 50% + 30 and 25% + 30, respectively. The highest IZs, 2.76 and 2.73 cm, against the growth of P. atrosepticum were observed in the LMEs (4000 mg/L) extracted from the plants treated at the levels of 50% + 30 and 25% + 30, respectively. Several phenolic compounds such as syringic acid, p-coumaric acid, chlorogenic acid, cinnamic acid, ellagic acid, caffeic acid, benzoic acid, gallic acid, ferulic acid, salicylic acid, pyrogallol, and catechol, as well as flavonoid compounds such as 7-hydroxyflavone, naringin, rutin, apigenin, quercetin, kaempferol, luteolin, hesperidin, catechin, and chrysoeriol, were identified in the LMEs as analyzed by HPLC with different concentrations according to the treatment of compost + AgNPs used for the plants. In conclusion, the specific criteria that were utilized to measure the growth of A. curassavica revealed the novelty of compost and AgNPs combination treatments, particularly at a concentration of 50% compost + AgNPs 30 mg/L or 20 mg/L, which is better for the growth and phytochemical production of A. curassavica in the field.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference123 articles.

1. A revised classification of the Apocynaceae s.l;Endress;Bot. Rev.,2000

2. Pharmacognosy in the 21st century;Kinghorn;J. Pharm. Pharmacol.,2001

3. GC-MS Analysis of Bio-active Compounds in Ethanolic Extract of Leaf and Stem of Asclepias curassavica L;Shelke;Int. J. Pharm. Investig.,2019

4. Evaluation of antimicrobial activity of Asclepias curassavica Ethanol extract;Mohan;Am. J. PharmTech Res.,2019

5. Antimicrobial activity of Asclepias curassavica flower extract;Mary;J. BioInnov.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3