Synergistic Action of Biosynthesized Silver Nanoparticles and Culture Supernatant of Bacillus amyloliquefacience against the Soft Rot Pathogen Dickeya dadantii

Author:

Hossain Afsana123,Luo Jinyan4,Ali Md. Arshad2ORCID,Chai Rongyao1,Shahid Muhammad5ORCID,Ahmed Temoor2ORCID,M. Hassan Mohamed6ORCID,H. Kadi Roqayah7,An Qianli2ORCID,Li Bin2ORCID,Wang Yanli1

Affiliation:

1. State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

2. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China

3. Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

4. Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China

5. Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan

6. Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia

7. Department of Biology, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia

Abstract

Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and utilization of AgNPs in a large range of areas resulted in the substantial release of these nanoparticles into the soil and water environment, causing concern for the safety of ecosystems and phytosanitary. In an attempt to find an effective control measure for sweet potato soft rot disease, the pathogen Dickeya dadantii was exposed to AgNPs, the cell-free culture supernatant (CFCS) of Bacillus amyloliquefaciens alone, and both in combination. AgNPs were synthesized using CFCS of Bacillus amyloliquefaciens strain A3. The green synthesized AgNPs exhibited a characteristic surface plasmon resonance peak at 410–420 nm. Electron microscopy and X-ray diffraction spectroscopy determined the nanocrystalline nature and 20–100 nm diameters of AgNPs. Release of metal Ag+ ion from biosynthesized AgNPs increases with time. AgNPs and CFCS of B. amyloliquefaciens alone exhibited antibacterial activity against the growth, biofilm formation, swimming motility, and virulence of strain A3. The antibacterial activities elevated with the elevation in AgNPs and CFCS concentration. Similar antibacterial activities against D. dadantii were obtained with AgNPs at 50 µg·mL−1, 50% CFCS alone, and the combination of AgNPs at 12 µg·mL−1 and 12% CFCS of B. amyloliquefaciens. In planta experiments indicated that all the treatments reduced D. dadantii infection and increased plant growth. These findings suggest that AgNPs along with CFCS of B. amyloliquefaciens can be applied to minimize this bacterial disease by controlling pathogen-contaminated sweet potato tuber with minimum Ag nano-pollutant in the environment.

Funder

Shanghai Agriculture Applied Technology Development Program

Hangzhou Science and Technology Development Plan Project

Zhejiang Provincial Key R & D Program of China

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3