PYL Family Genes from Liriodendron chinense Positively Respond to Multiple Stresses

Author:

Wu Xinru123,Zhu Junjie123,Chen Xinying123,Zhang Jiaji123,Lu Lu123,Hao Zhaodong123ORCID,Shi Jisen123ORCID,Chen Jinhui123

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China

3. College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China

Abstract

The phytohormone abscisic acid (ABA) plays important roles in response to abiotic and biotic stresses in plants. Pyrabactin resistance 1-like (PYR/PYL) proteins are well-known as ABA receptors, which are responsible for ABA signal transduction. Nevertheless, the characteristics of PYL genes from Liriodendron chinense, an endangered timber tree, remain unclear in coping with various stresses. In this study, five PYLs were identified from the genome of Liriodendron chinense by sequence alignment and conserved motif analysis, which revealed that these LcPYLs contain a conserved gate and latch motif for ABA binding. The LcPYL promoters possess a series of cis-acting elements involved in response to various hormone and abiotic stresses. Moreover, the transcriptome data of Liriodendron hybrid leaves reveal that LcPYL genes specifically transcript under different abiotic stresses; Lchi11622 transcription was induced by drought and cold treatment, and Lchi01385 and Lchi16997 transcription was upregulated under cold and hot stress, respectively. Meanwhile, the LcPYLs with high expression levels shown in the transcriptomes were also found to be upregulated in whole plants treated with the same stresses tested by qPCR. Moreover, under biotic stress caused by scale insect and whitefly, Liriodendron hybrid leaves exhibited a distinct phenotype including disease spots that are dark green in the middle and yellow on the margin; the qPCR results showed that the relative expression levels of Lchi13641 and Lchi11622 in infected leaves were upregulated by 1.76 and 3.75 folds relative to normal leaves, respectively. The subcellular localizations of these stress-responsive LcPYLs were also identified in protoplasts of Liriodendron hybrid. These results provide a foundation to elucidate the function of PYLs from this elite tree species and assist in understanding the molecular mechanism of Liriodendron hybrid in dealing with abiotic and biotic stresses. In future research, the detailed biological function of LcPYLs and the genetic redundancy between LcPYLs can be explored by gene overexpression and knockout based on this study.

Funder

National Key R&D Program of China during the 14th Five-year Plan Period

Youth Foundation of the Natural Science Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3