Time of Day Analysis over a Field Grown Developmental Time Course in Rice

Author:

Michael Todd P.ORCID

Abstract

Plants integrate time of day (TOD) information over an entire season to ensure optimal growth, flowering time, and grain fill. However, most TOD expression studies have focused on a limited number of combinations of daylength and temperature under laboratory conditions. Here, an Oryza sativa (rice) expression study that followed TOD expression in the field over an entire growing season was re-analyzed. Similar to Arabidopsis thaliana, almost all rice genes have a TOD-specific expression over the developmental time course. As has been suggested in other grasses, thermocycles were a stronger cue for TOD expression than the photocycles over the growing season. All the core circadian clock genes display consistent TOD expression over the season with the interesting exception that the two grass paralogs of EARLY FLOWERING 3 (ELF3) display a distinct phasing based on the interaction between thermo- and photo-cycles. The dataset also revealed how specific pathways are modulated to distinct TOD over the season consistent with the changing biology. The data presented here provide a resource for researchers to study how TOD expression changes under natural conditions over a developmental time course, which will guide approaches to engineer more resilient and prolific crops.

Funder

Tang Genomics Fund to TPM

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3