The Effect of Pre-Annealing on the Evolution of the Microstructure and Mechanical Behavior of Aluminum Processed by a Novel SPD Method

Author:

Zhilyaev Alexander P.ORCID,Torres Mario J.,Cadena Homero D.,Rodriguez Sandra L.,Calvo Jessica,Cabrera José-MaríaORCID

Abstract

A novel continuous process of severe plastic deformation (SPD) named continuous close die forging (CCDF) is presented. The CCDF process combines all favorite advances of multidirectional forging and other SPD methods, and it can be easily scaled up for industrial use. Keeping constant both the cross section and the length of the sample, the new method promotes a refinement of the microstructure. The grain refinement and mechanical properties of commercially pure aluminum (AA1050) were studied as a function of the number of CCDF repetitive passes and the previous conditioning heat treatment. In particular, two different pre-annealing treatments were applied. The first one consisted of a reheating to 623 K (350 °C) for 1 h aimed at eliminating the effect of the deformation applied during the bar extrusion. The second pre-annealing consisted on a reheating to 903 K (630 °C) for 48 h plus cooling down to 573 K (300 °C) at 66 K/h. At this latter temperature, the material remained for 3 h prior to a final cooling to room temperature within the furnace, i.e., slow cooling rate. This treatment aimed at increasing the elongation and formability of the material. No visible cracking was detected in the workpiece of AA1050 processed up to 16 passes at room temperature after the first conditioning heat treatment, and 24 passes were able to be applied when the material was subjected to the second heat treatment. After processing through 16 passes for the low temperature pre-annealed samples, the microstructure was refined down to a mean grain size of 0.82 µm and the grain size was further reduced to 0.72 µm after 24 passes, applied after the high temperature heat treatment. Tensile tests showed the best mechanical properties after the high temperature pre-annealing and 24 passes of the novel CCDF method. A yield strength and ultimate tensile strength of 180 and 226 MPa, respectively, were obtained. Elongation to fracture was 18%. The microstructure and grain boundary nature are discussed in relation to the mechanical properties attained by the current ultrafine-grained (UFG) AA1050 processed by this new method.

Publisher

MDPI AG

Subject

General Materials Science

Reference21 articles.

1. The Deformation and Ageing of Mild Steel: III Discussion of Results

2. The cleavage strength of polycrystals;Petch;J. Iron Steel Inst.,1953

3. Bulk Nanostructured Materials, Fundamentals and Applications;Valiev,2014

4. Severe plastic deformation (SPD) processes for metals

5. Commercialization of Nanostructured Metals Produced by Severe Plastic Deformation Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3