Author:
Zhang Lu,Okudan Gorkem,Basantes-Defaz Alexandra-Del-Carmen,Gneiting Ryan M.,Subramaniam Sankaran,Ozevin Didem,Indacochea Ernesto
Abstract
Welding defects such as lack of penetration, undercutting, crater crack, burn-through and porosity can occur during manufacturing. Assessing weld quality using nondestructive evaluation methods is important for the quality assurance of welded parts. In this paper, the measurement of weld penetration, which is directly related to weld integrity, is investigated by means of ultrasonics. Both linear and nonlinear ultrasonic methods are studied to assess their sensitivities to weld penetration. Welded plates with different penetration depths controlled by changing weld heat input are manufactured using gas metal arc welding (GMAW). Microscopic properties are assessed after the ultrasonic measurements are completed. Numerical models are built using the weld profile obtained from macrographs to explain the relationship between linear ultrasonic and weld penetration. A quantitative correlation between weld morphology (shape, width and depth) and the energy of linear ultrasonic signal is determined, where the increase of weld bead penetration exceeding the plate thickness results in decrease of the energy of the ultrasonic signal. Minimum detectable weld morphology using linear ultrasonics is defined depending on the selected frequency. Microhardness measurement is conducted to explain the sensitivity of nonlinear ultrasonics to both weld penetration and heterogeneity in weld. The numerical and experimental results show that the weld geometry influences the ultrasonic measurement other than the materials’ properties.
Funder
Digital Manufacturing and Design Innovation Institute
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献