Characterization of Microstructure, Precipitations and Microsegregation in Laser Additive Manufactured Nickel-Based Single-Crystal Superalloy

Author:

Liu Zhaoyang,Shu Jiayang

Abstract

In this study, the microstructure, precipitations, and microsegregation in the laser additive manufactured thin-wall structure of a single-crystal superalloy are synthetically characterized. The influence of a subsequent heat treatment on the microstructure and precipitations is discussed. The results show that under the given processing conditions, the single-crystal microstructure is regenerated perfectly with small misorientation angles in the thin-wall structure. The crystal morphology shows obvious diversity and instability with the incremental height of thin-wall structure. With the increase of manufacturing height, both the primary and secondary dendritic arm spacings of epitaxial columnar dendrites first increase rapidly and then reach a dynamic balanced state. The distribution of precipitations and pores keeps symbiosis in the interdendritic region and shows periodic band characteristic with high density in the band region and low density in the inner region of plate layers. The microsegregation of element atoms in the microstructure shows a three-dimensional network distribution. The concentration of element atoms keeps good consistency with high value in the three-dimensional network and nearly standard value in the outside region. The subsequent heat treatment process contributes to the occupation of as-processed pores by the expanded mature precipitations with good blocky shape. Further optimization of the heat treatment process for improving the lattice coherency of precipitated γ’ phase and γ matrix in the laser additive manufactured single-crystal superalloy is needed and valuable.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Planning Project of Shenzhen Municipality

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3