Areal Surface Roughness of AZ31B Magnesium Alloy Processed by Dry Face Turning: An Experimental Framework Combined with Regression Analysis

Author:

Gao Honghong,Ma Baoji,Singh Ravi Pratap,Yang Heng

Abstract

Surface roughness is used to quantitatively evaluate the surface topography of the workpiece subjected to mechanical processing. The optimal machining parameters are critical to getting designed surface roughness. The effects of cutting speed, feed rate, and depth of cut on the areal surface roughness of AZ31B Mg alloys were investigated via experiments combined with regression analysis. An orthogonal design was adopted to process the dry turning experiment of the front end face of the AZ31B bar. The areal surface roughness Sa and Sz of the end face were measured with an interferometer and analyzed through direct analysis and variance analysis (ANOVA). Then, an empirical model was established to predict the value of Sa through multiple regression analysis. Finally, a verification experiment was carried out to confirm the optimal combination of parameters for the minimum Sa and Sz, as well as the availability of the regression model for predicting Sa. The results show that both Sa and Sz of the machined end face reduce with the decrease in feed rate. The minimum of Sa and Sz reaches to 0.577 and 5.480 µm, respectively, with the cutting speed of 85 m/min, the feed rate of 0.05 mm/rev, and a depth of cut of 0.3 mm. The feed rate, depth of cut, and cutting speed contribute the greatest, the second and the smallest to Sa, respectively. The linear regression model can predict Sa of AZ31B machined with dry face turning, since the cutting speed, feed rate and depth of cut can explain 97.5% of the variation of Sa.

Funder

Education Department of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3