Abstract
Understanding the correlation of plasticity with deformation and dynamic recrystallization (DRX) behaviors, in magnesium (Mg) alloys deformed under high-strain-rate conditions, is increasingly important for wrought Mg processing. In the present study, a ZK30 (Mg-2.61%Zn-0.66%Zr by weight percent (wt.%)) alloy in the as-forged state was hot compressed to various strain levels at a temperature of 350 °C and a strain rate of 10 s−1. Heterogeneous deformation and dynamic recrystallization (DRX) behaviors of the complicated microstructures in the deformed samples were analyzed via a grain-partitioning approach based on intra-grain misorientation analysis from electron back-scattered diffraction (EBSD). The ZK30 alloy showed excellent formability, remaining intact at a true strain of −1.11. Continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) via grain boundary corrugation/bulging are the dominant mechanisms for the relaxation of strain energy during hot compression. Initial Zr-rich coarse grains undertook a significant portion of the plastic strain as the compression progressed, reflected by the increased misorientations within their interior and marked change in their aspect ratios. The results indicate that the excellent plasticity of the as-forged ZK30 alloy can be attributed to the operative CDRX mechanisms and the reduced deformation anisotropy of Zr-rich coarse grains containing Zn–Zr nano–precipitates.
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献