Effect of Laser Energy Density on the Properties of CoCrFeMnNi High-Entropy Alloy Coatings on Steel by Laser Cladding

Author:

Ding Chenchen1ORCID,Zhang Qi1,Sun Siyu1,Ni Hongjun1,Liu Yu12,Wang Xiao1,Wan Xiaofeng1ORCID,Wang Hui13

Affiliation:

1. School of Mechanical Engineering, Nantong University, Nantong 226007, China

2. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

3. Institute for Industrial Science, The University of Tokyo, Chiba 277-8561, Japan

Abstract

High-entropy alloys (HEAs) have emerged as a novel class of materials with exceptional mechanical and corrosion properties, offering promising applications in various engineering fields. However, optimizing their performance through advanced manufacturing techniques, like laser cladding, remains an area of active research. This study investigated the effects of laser energy density on the mechanical and electrochemical properties of CoCrFeMnNi HEA coatings applied to Q235 substrates. Utilizing X-ray diffraction (XRD), this study confirmed the formation of a single-phase face-centered cubic (FCC) structure in all coatings. The hardness of the coatings peaked at 210 HV with a laser energy density of 50 J/mm2. Friction and wear tests highlighted that a coating applied at 60 J/mm2 exhibited the lowest wear rate, primarily due to adhesive and oxidative wear mechanisms, while the 55 J/mm2 coating showed increased hardness but higher abrasive wear. Electrochemical testing revealed superior corrosion resistance for the 60 J/mm2 coating, with a slow corrosion rate and minimal passivation tendency in contrast to the 55 J/mm2 coating. The comprehensive evaluation indicates that the HEA coating with an energy density of 60 J/mm2 exhibits exceptional wear and corrosion resistance.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Natural Science Horizontal Research Project of Nantong University

Key R&D Projects of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Analysis and Test Centre of Nantong University and the Analysis

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3