Assessing the Impact of Terraces and Vegetation on Runoff and Sediment Routing Using the Time-Area Method in the Chinese Loess Plateau

Author:

Bai Juan,Yang Shengtian,Zhang Yichi,Liu Xiaoyan,Guan Yabing

Abstract

Terracing and vegetation are an effective practice for soil and water conservation on sloped terrain. They can significantly reduce the sediment yield from the surface area, as well as intercept the sediment yield from upstream. However, most hydrological models mainly simulate the effect of the terraces and vegetation on water and sediment reduction from themselves, without considering their roles in the routing process, and thus likely underestimate their runoff and sediment reduction effect. This study added the impact of terraces and vegetation practice on water and sediment routing using the time-area method. The outflow in each travel time zone was revised in each time step by extracting the watershed of the terrace units and the vegetation units and calculating the water or sediment stored by the terraces or held by the vegetation. The revised time-area method was integrated into the Land change Model-Modified Universal Soil Loss Equation (LCM-MUSLE) model. Pianguanhe Basin, in the Chinese Loess Plateau, was chosen as the study area and eight storms in the 1980s and 2010s were selected to calibrate and verify the original LCM-MUSLE model and its revised version. The results showed that the original model was not applicable in more recent years, since the surface was changed significantly as a result of revegetation and slope terracing, while the accuracy improved significantly when using the revised version. For the three events in the 2010s, the average runoff reduction rate in routing process was 51.02% for vegetation, 26.65% for terraces, and 71.86% for both terraces and vegetation. The average sediment reduction rate in routing process was 32.22% for vegetation, 24.52% for terraces, and 53.85% for both terraces and vegetation. This study provides a generalized method to quantitatively assess the impact of terraces and vegetation practice on runoff and sediment reduction at the catchment scale.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3