Affiliation:
1. School of Integrated Circuits, Tsinghua University, Beijing 100084, China
2. Suzhou Huiwen Nanotechnology Co., Ltd., Suzhou 215004, China
3. State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract
The sensitivity and selectivity profiles of gas sensors are always changed by sensor drifting, sensor aging, and the surroundings (e.g., temperature and humidity changes), which lead to a serious decline in gas recognition accuracy or even invalidation. To address this issue, the practical solution is to retrain the network to maintain performance, leveraging its rapid, incremental online learning capacity. In this paper, we develop a bio-inspired spiking neural network (SNN) to recognize nine types of flammable and toxic gases, which supports few-shot class-incremental learning, and can be retrained quickly with a new gas at a low accuracy cost. Compared with gas recognition approaches such as support vector machine (SVM), k-nearest neighbor (KNN), principal component analysis (PCA) +SVM, PCA+KNN, and artificial neural network (ANN), our network achieves the highest accuracy of 98.75% in five-fold cross-validation for identifying nine types of gases, each with five different concentrations. In particular, the proposed network has a 5.09% higher accuracy than that of other gas recognition algorithms, which validates its robustness and effectiveness for real-life fire scenarios.
Funder
Minister of Science and Technology, China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献