Detection of Occluded Small Commodities Based on Feature Enhancement under Super-Resolution

Author:

Dong Haonan1,Xie Kai12,Xie An1,Wen Chang2ORCID,He Jianbiao3ORCID,Zhang Wei3,Yi Dajiang4,Yang Sheng5

Affiliation:

1. School of Electronic Information, Yangtze University, Jingzhou 434023, China

2. Western Research Institute, Yangtze University, Karamay 834000, China

3. School of Computer Science, Central South University, Changsha 410083, China

4. National Super-Computer Center in Changsha, Hunan University, Changsha 410082, China

5. School of Information Science and Engineering, Hunan University, Changsha 410082, China

Abstract

As small commodity features are often few in number and easily occluded by hands, the overall detection accuracy is low, and small commodity detection is still a great challenge. Therefore, in this study, a new algorithm for occlusion detection is proposed. Firstly, a super-resolution algorithm with an outline feature extraction module is used to process the input video frames to restore high-frequency details, such as the contours and textures of the commodities. Next, residual dense networks are used for feature extraction, and the network is guided to extract commodity feature information under the effects of an attention mechanism. As small commodity features are easily ignored by the network, a new local adaptive feature enhancement module is designed to enhance the regional commodity features in the shallow feature map to enhance the expression of the small commodity feature information. Finally, a small commodity detection box is generated through the regional regression network to complete the small commodity detection task. Compared to RetinaNet, the F1-score improved by 2.6%, and the mean average precision improved by 2.45%. The experimental results reveal that the proposed method can effectively enhance the expressions of the salient features of small commodities and further improve the detection accuracy for small commodities.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3