Fabrication of Ultra-High-Performance PVDF-HFP Air Filters by Electrospinning

Author:

Borojeni Iman Azarian1,Gajewski Greg1,Jenab Arash2,Sanjari Mehdi3,Boudreault Charles3,Riahi Reza A.1

Affiliation:

1. Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada

2. River Drive Manufacturing, Oakville, ON L6M 2Y1, Canada

3. NanoPhyll Inc., Montreal, QC H4S 2A4, Canada

Abstract

This research aims to fabricate hydrophobic electrospun air filters with ultra-high performance against virions. In order to achieve this goal, constant basis weight electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with low-bead, high-bead, and ultra-high-bead fibre structures were used to fabricate single and multilayer filters by controlling the Dimethylformamide (DMF)-to-acetone ratio of the solvent. The water contact angle of the fabricated layers ranged from 131° for low-bead structures to 135° for ultra-high-bead structures, indicating their overall high hydrophobicity. The size-resolved filtering efficiency and pressure drop tests on the fabricated filters showed that low-bead structure for both single and multilayer filters and high-bead structure for single-layer filters enhance the quality factor remarkably. The results showed that the single-layer ultra-high-bead structure air filters had a filtering efficiency of 99.33%, superior to N95 air filters (96.54%) and comparable to double N95 filters (99.86%). However, the electrospun air filter showed a pressure drop of 169.3 Pa and a quality factor of 27.6×10−3 Pa−1compared to a pressure drop of 388 Pa and quality factor of 16.9×10−3 Pa−1 for double N95 air filters. Therefore, it has a high potential to be used as the filtration media in hospitals, long-term care centers, and masks to provide superior protection against virions for healthcare providers and patients.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance COVID-19 and Discovery Grant

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3