Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing

Author:

Islam Md. Nazibul,Doria Steven M.,Fu Xiaotong,Gagnon Zachary R.

Abstract

Over the last two decades, the field of microfluidics has received significant attention from both academia and industry. Each year, researchers report thousands of new prototype devices for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within the microfluidic devices themselves remains expensive and often cost-prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise, and real-time pressure and flow rate measurement capabilities have become increasingly important. While many labs use commercial platforms and sensors, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy-to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS–carbon black conductive membranes and uses an impedance analyzer to measure impedance changes due to fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on the pressure gradient.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3