Low-Complexity Self-Interference Cancellation for Multiple Access Full Duplex Systems

Author:

Shayovitz ShacharORCID,Krestiantsev Andrey,Raphaeli Dan

Abstract

Self-interference occurs when there is electromagnetic coupling between the transmission and reception of the same node; thus, degrading the RX sensitivity to incoming signals. In this paper we present a low-complexity technique for self-interference cancellation in multiple carrier multiple access systems employing whole band direct to digital sampling. In this scenario, multiple users are simultaneously received and transmitted by the system at overlapping arbitrary bandwidths and powers. Traditional algorithms for self-interference mitigation based on recursive least squares (RLS) or least mean squares (LMS), fail to provide sufficient rejection, since the incoming signal is far from being spectrally flat, which is critical for their performance. The proposed algorithm mitigates the interference by modeling the incoming multiple user signal as an autoregressive (AR) process and jointly estimates the AR parameters and self-interference. The resulting algorithm can be implemented using a low-complexity architecture comprised of only two RLS modules. The novel algorithm further satisfies low latency constraints and is adaptive, supporting time varying channel conditions. We compare this to many self-interference cancellation algorithms, mostly adopted from the acoustic echo cancellation literature, and show significant performance gain.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3