Abstract
In this paper, the Langmuir-Hinshelwood (L-H) model has been used to investigate the kinetics of photodegradation of gaseous benzene by nitrogen-doped TiO2 (N-TiO2) at 25 °C under visible light irradiation. Experimental results show that the photoreaction coefficient kpm increased from 3.992 × 10−6 mol·kg−1·s−1 to 11.55 × 10−6 mol·kg−1·s−1 along with increasing illumination intensity. However, the adsorption equilibrium constant KL decreased from 1139 to 597 m3·mol−1 when the illumination intensity increased from 36.7 × 104 lx to 75.1 × 104 lx, whereas it was 2761 m3·mol−1 in the absence of light. This is contrary to the fact that KL should be a constant if the temperature was fixed. This phenomenon can be attributed to the breaking of the adsorption-desorption equilibrium by photocatalytically decomposition. To compensate for the disequilibrium of the adsorption-desorption process, photoreaction coefficient kpm was introduced to the expression of KL and the compensation form was denoted as Km. KL is an indicator of the adsorption capacity of TiO2 while Km is only an indicator of the coverage ratio of TiO2 surface. The modified L-H model has been experimentally verified so it is expected to be used to predict the kinetics of the photocatalytic degradation of gaseous benzene.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献