Engineering Mesoporous NiO with Enriched Electrophilic Ni3+ and O− toward Efficient Oxygen Evolution

Author:

Liu Xiu,Zhai Zhi-Yuan,Chen Zhou,Zhang Li-Zhong,Zhao Xiu-Feng,Si Feng-Zhan,Li Jian-Hui

Abstract

Tremendous efforts have been devoted to develop low-cost and highly active electrocatalysts for oxygen evolution reaction (OER). Here, we report the synthesis of mesoporous nickel oxide by the template method and its application in the title reaction. The as-prepared mesoporous NiO possesses a large surface area, uniform mesopores, and rich surface electrophilic Ni3+ and O− species. The overpotential of meso-NiO in alkaline medium is 132 mV at 10 mA cm−1 and 410 mV at 50 mA cm−1, which is much smaller than that of the other types of NiO samples. The improvement in the OER activity can be ascribed to the synergy of the large surface area and uniform mesopores for better mass transfer and high density of Ni3+ and O− species favoring the nucleophilic attack by OH− to form a NiOOH intermediate. The reaction process and the role of electrophilic Ni3+ and O− were discussed in detail. This results are more conducive to the electrochemical decomposition of water to produce hydrogen fuel as a clean and renewable energy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3