Hormonal Signaling during dPCD: Cytokinin as the Determinant of RNase-Based Self-Incompatibility in Solanaceae

Author:

Zakharova Ekaterina1,Khanina Tatiana1,Knyazev Andrey1,Milyukova Natalia1,Kovaleva Lidia V.2

Affiliation:

1. All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia

2. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 191186 Moscow, Russia

Abstract

Research into molecular mechanisms of self-incompatibility (SI) in plants can be observed in representatives of various families, including Solanaceae. Earlier studies of the mechanisms of S-RNase-based SI in petunia (Petunia hybrida E. Vilm.) demonstrate that programmed cell death (PCD) is an SI factor. These studies suggest that the phytohormon cytokinin (CK) is putative activator of caspase-like proteases (CLPs). In this work, data confirming this hypothesis were obtained in two model objects—petunia and tomato (six Solanaceae representatives). The exogenous zeatin treatment of tomato and petunia stigmas before a compatible pollination activates CLPs in the pollen tubes in vivo, as shown via the intravital imaging of CLP activities. CK at any concentration slows down the germination and growth of petunia and tomato male gametophytes both in vitro and in vivo; shifts the pH of the cytoplasm (PHc) to the acid region, thereby creating the optimal conditions for CLP to function and inhibiting the F-actin formation and/or destructing the cytoskeleton in pollen tubes to point foci during SI-induced PCD; and accumulates in style tissues during SI response. The activity of the ISOPENTENYLTRANSFERASE 5 (IPT5) gene at this moment exceeds its activity in a cross-compatible pollination, and the levels of expression of the CKX1 and CKX2 genes (CK OXIDASE/DEHYDROGENASE) are significantly lower in self-incompatible pollination. All this suggests that CK plays a decisive role in the mechanism underlying SI-induced PCD.

Funder

Ministry of Education and Science of Russian Federation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3