GPU Implementation of the Improved CEEMDAN Algorithm for Fast and Efficient EEG Time–Frequency Analysis

Author:

Wang Zeyu1,Juhasz Zoltan1ORCID

Affiliation:

1. Department of Electrical Engineering and Information Systems, University of Pannonia, 8200 Veszprem, Hungary

Abstract

Time–frequency analysis of EEG data is a key step in exploring the internal activities of the human brain. Studying oscillations is an important part of the analysis, as they are thought to provide the underlying mechanism for communication between neural assemblies. Traditional methods of analysis, such as Short-Time FFT and Wavelet Transforms, are not ideal for this task due to the time–frequency uncertainty principle and their reliance on predefined basis functions. Empirical Mode Decomposition and its variants are more suited to this task as they are able to extract the instantaneous frequency and phase information but are too time consuming for practical use. Our aim was to design and develop a massively parallel and performance-optimized GPU implementation of the Improved Complete Ensemble EMD with the Adaptive Noise (CEEMDAN) algorithm that significantly reduces the computational time (from hours to seconds) of such analysis. The resulting GPU program, which is publicly available, was validated against a MATLAB reference implementation and reached over a 260× speedup for actual EEG measurement data, and provided predicted speedups in the range of 3000–8300× for longer measurements when sufficient memory was available. The significance of our research is that this implementation can enable researchers to perform EMD-based EEG analysis routinely, even for high-density EEG measurements. The program is suitable for execution on desktop, cloud, and supercomputer systems and can be the starting point for future large-scale multi-GPU implementations.

Funder

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

European Union’s Horizon

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3