Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots

Author:

Hu Yuqi,Jiang Ripeng,Li Xiaoqian,Li Anqing,Xie Ziming

Abstract

The microstructural refinement of 2195 aluminum alloy ingots is particularly important for improving their industrial applications and mechanical properties. Combined with vacuum casting and inert gas protection, scalable high-strength ultrasonic melt processing (USMT) technology was used to manufacture 2195 aluminum alloy cylindrical ingots. Then, the influence of USMT on the main microstructural components (primary α-Al grains, secondary phase network, and precipitated particles) was studied. Our experiments show that the main microstructure of the ingot was improved after the introduction of ultrasound. Compared to the ingot formed without USMT, the size and morphology of the primary α-Al phase were optimized. The agglomeration of coarsening secondary phases can be alleviated, and the large layered secondary phase network becomes discontinuous throughout the ingot under USMT. At the same time, the mechanical properties of the solidified aluminum alloy ingots were also tested, and comparisons were made between samples formed with and without USMT. The results show that the stress concentration caused by the large area of coarse secondary phase in the ingot leads to the decrease of mechanical properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3