Fatigue Performance of an Additively Manufactured Zr-Based Bulk Metallic Glass and the Effect of Post-Processing

Author:

Sohrabi NavidORCID,Hamidi-Nasab MiladORCID,Rouxel Baptiste,Jhabvala Jamasp,Parrilli Annapaola,Vedani MaurizioORCID,Logé Roland E.ORCID

Abstract

Fatigue is the most common cause of failure of mechanical parts in engineering applications. In the current work, we investigate the fatigue life of a bulk metallic (BMG) glass fabricated via additive manufacturing. Specimens fabricated via laser powder-bed fusion (LPBF) are shown to have a fatigue ratio of 0.20 (fatigue limit of 175 MPa) in a three-point bending fatigue test. Three strategies for improving the fatigue behavior were tested, namely (1) relaxation heat treatment, giving a slight fatigue life improvement at high loading conditions (≥250 MPa), (2) laser shock peening, and (3) changing the build orientation, the latter two of which yielded no significant effects. It was found that the presence of lack of fusion (LoF) had the preponderant effect on fatigue resistance of the specimens manufactured. LoF was observed to be a source of stress localization and initiation of cracks. The fatigue life in BMGs fabricated by LPBF is thus primarily influenced by powder quality and process-induced defects, which cannot be removed by the post-treatments carried out in this study. It is believed that a slight increase in laser power, either in the near-surface regions or in the core of the specimens, could improve the fatigue behavior despite the associated (detrimental) increase of crystallized fraction.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3