Abstract
Silicon content forecasting models have been requested by the operational team to anticipate necessary actions during the blast furnace operation when producing molten iron, to control the quality of the product and reduce costs. This paper proposed a new algorithm to perform the silicon content time series up to 8 h ahead, immediately after the molten iron chemical analysis is delivered by the laboratory. Due to the delay of the laboratory when delivering the silicon content measurement, the proposed algorithm considers a minimum useful forecasting horizon of 3 h ahead. In a first step, it decomposes the silicon content time series into different subseries using the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). Next, all subseries forecasts were determined through Nonlinear Autoregressive (NAR) networks, and finally, these forecasts were summed to furnish the long-term forecast of silicon content. Using data from a real industry, we showed that the prediction error was within an acceptable range according to the blast furnace technical team.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
General Materials Science,Metals and Alloys
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献