Copper-Tantalum Metal Matrix Composites Consolidated from Powder Blends by Severe Plastic Deformation

Author:

Levin Zachary S.,Demkowicz Michael J.,Hartwig Karl T.

Abstract

We investigated the effectiveness of severe plastic deformation by equal channel angular extrusion (ECAE) for consolidation of metal powders into metal matrix composites. Equal volumes of copper (Cu) and tantalum (Ta) powders were consolidated at ambient temperature via different ECAE routes. Composites processed by ECAE routes 4E and 4Bc were also processed at 300 °C. The resulting materials were characterized by scanning electron microscopy (SEM) and compression testing. Processing by route 4Bc at 300 °C resulted in the highest compressive strength, lowest anisotropy, and least strain rate sensitivity. We conclude that the superior properties achieved by this route arise from mechanical bonding due to interlocking Cu and Ta phases as well as enhanced metallurgical bonds from contact of pristine metal surfaces when the material is sheared along orthogonal planes.

Funder

National Nuclear Security Administration

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference41 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3