FEM Simulation and Experimental Tests on the SMAW Welding of a Dissimilar T-Joint

Author:

Sepe RaffaeleORCID,Giannella VenanzioORCID,Greco AlessandroORCID,De Luca AlessandroORCID

Abstract

Residual stresses induced by the welding processes may, in some cases, result in significant warping and distortions that can endanger the integrity of the welded structures. This document reports an investigation of the welding process to make a dissimilar T-joint through an advanced Finite Element (FE) modelling and a dedicated laboratory test. The T-joint consisted of two plates of dissimilar materials, AISI304 and S275JR steels, both having a thickness of 5 mm, welded through a Shielded Metal Arc Welding (SMAW). Thermocouples were used to acquire the temperature variations during welding. In parallel, an FE model was built and the welding process was simulated through the “element birth and death” technique. Numerical and experimental outcomes were compared in terms of temperature distributions during welding and in terms of distortion at the end of the final cooling, showing that the FE model was able to provide a high level of accuracy.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3