Improved Metallurgical Effect of Tundish through a Novel Induction Heating Channel for Multistrand Casting

Author:

Tang Haiyan,Wang Kaimin,Li Xiaosong,Liu Jinwen,Zhang Jiaquan

Abstract

Tundish with channel-type induction heating is one of new technologies adopted widely in China by the steel industry in the recent years, which can supply a constant liquid steel temperature control for the sequenced continuous casting process. For a five-strand tundish with induction heating in service, a kind of novel bifurcated split channel has been designed to solve the poor consistency of temperature and fluid flow for each strand that occurs with the conventional straight channel-type. The temperature distribution and fluid flow behaviors under the two structure modes were compared numerically by an electromagnetic-heat-flow multi-physics field coupling model. The results show that the maximum temperature difference between each strand outlet of the tundish can drop to less than 4 °C upon using the bifurcated channel, as compared to 10 °C under the original straight channel mode. According to the simulated results, case FK-A0 has been chosen as the optimized structure for industrial application. It has been verified through temperature measurements during the casting operation that the novel bifurcated split channel can improve the consistency of steel temperature for every strand of the tundish. The average temperature difference between the edge strand and the middle strand is 4.25 °C lower than the original straight channel, resulting in an upgraded metallurgical effect for the induction heated tundish.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3