Direct Exposure of Dry Enzymes to Atmospheric Pressure Non-Equilibrium Plasmas: The Case of Tyrosinase

Author:

Lapenna Annamaria,Fanelli FiorenzaORCID,Fracassi Francesco,Armenise VincenzaORCID,Angarano Valeria,Palazzo GerardoORCID,Mallardi Antonia

Abstract

The direct interaction of atmospheric pressure non-equilibrium plasmas with tyrosinase (Tyr) was investigated under typical conditions used in surface processing. Specifically, Tyr dry deposits were exposed to dielectric barrier discharges (DBDs) fed with helium, helium/oxygen, and helium/ethylene mixtures, and effects on enzyme functionality were evaluated. First of all, results show that DBDs have a measurable impact on Tyr only when experiments were carried out using very low enzyme amounts. An appreciable decrease in Tyr activity was observed upon exposure to oxygen-containing DBD. Nevertheless, the combined use of X-ray photoelectron spectroscopy and white-light vertical scanning interferometry revealed that, in this reactive environment, Tyr deposits displayed remarkable etching resistance, reasonably conferred by plasma-induced changes in their surface chemical composition as well as by their coffee-ring structure. Ethylene-containing DBDs were used to coat tyrosinase with a hydrocarbon polymer film, in order to obtain its immobilization. In particular, it was found that Tyr activity can be fully retained by properly adjusting thin film deposition conditions. All these findings enlighten a high stability of dry enzymes in various plasma environments and open new opportunities for the use of atmospheric pressure non-equilibrium plasmas in enzyme immobilization strategies.

Funder

Regione Puglia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3