Author:
Deng Ruoling,Tao Ming,Huang Xunan,Bangura Kemoh,Jiang Qian,Jiang Yu,Qi Long
Abstract
Grain number per rice panicle, which directly determines grain yield, is an important agronomic trait for rice breeding and yield-related research. However, manually counting grains of rice per panicle is time-consuming, laborious, and error-prone. In this research, a grain detection model was proposed to automatically recognize and count grains on primary branches of a rice panicle. The model used image analysis based on deep learning convolutional neural network (CNN), by integrating the feature pyramid network (FPN) into the faster R-CNN network. The performance of the grain detection model was compared to that of the original faster R-CNN model and the SSD model, and it was found that the grain detection model was more reliable and accurate. The accuracy of the grain detection model was not affected by the lighting condition in which images of rice primary branches were taken. The model worked well for all rice branches with various numbers of grains. Through applying the grain detection model to images of fresh and dry branches, it was found that the model performance was not affected by the grain moisture conditions. The overall accuracy of the grain detection model was 99.4%. Results demonstrated that the model was accurate, reliable, and suitable for detecting grains of rice panicles with various conditions.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献