Abstract
This paper describes the image enhancement of a computational integral imaging reconstruction method via reconstructing a four-dimensional (4-D) image structure. A computational reconstruction method for high-resolution three-dimensional (3-D) images is highly required in 3-D applications such as 3-D visualization and 3-D object recognition. To improve the visual quality of reconstructed images, we introduce an adjustable parameter to produce a group of 3-D images from a single elemental image array. The adjustable parameter controls overlapping in back projection with a transformation of cropping and translating elemental images. It turns out that the new parameter is an independent parameter from the reconstruction position to reconstruct a 4-D image structure with four axes of x, y, z, and k. The 4-D image structure of the proposed method provides more visual information than existing methods. Computer simulations and optical experiments are carried out to show the feasibility of the proposed method. The results indicate that our method enhances the image quality of 3-D images by providing a 4-D image structure with the adjustable parameter.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献