Graphene Oxide-Chitosan Composites for Water Treatment from Copper Cations

Author:

Politaeva NataliaORCID,Yakovlev AndreiORCID,Yakovleva Elena,Chelysheva Valentina,Tarantseva KlaraORCID,Efremova Sania,Mukhametova Liliya,Ilyashenko Svetlana

Abstract

This paper considers modern sorption materials for wastewater treatment. The literature data on wastewater treatment with materials based on graphene and chitosan are presented. The production and application of composite sorbents is discussed. It is shown that a promising application of graphene oxide (GO) as a filler enhances the mechanical and sorption properties of the polymer matrix. The biopolymer chitosan (Ch) is a challenging matrix for GO, having unique sorption, chelate-forming, ion-exchange, and complex-forming properties. Composite adsorbents based on graphene oxide and chitosan have a high extraction efficiency of heavy and radioactive metals, dyes, and pharmaceutical compounds dorzolamide and tetracycline. GO-Ch composites with various ratios of chitosan and graphene oxide (2–7%) were formed by drop granulation. The composites obtained were investigated in terms of the ability to extract copper cations from the effluents, and it was shown that the composite having the content of GO:Ch = 55.5:44.5% (by mass in dry granules) had the best sorption and mechanical properties. This sample had high purification efficiency from copper cations (96%) and the required mechanical properties (attrition ≤ 0.4%, grindability ≤ 4%). For this sample, the influence of various factors (pH, sorbent dosage, temperature, and time of sorption) on sorption processes were studied. The best conditions for the sorption processes by the GO-Ch sorbent were determined. The sorbent dosage was 20 g/L, the sorption time was 20 min, and the temperature was 20 ± 2 °C, pH = 7. The adsorption isotherm was plotted and the maximum sorption capacity of copper cations A = 58.5 mg/g was determined. Microstructural and infrared (IR) spectroscopy studies of GO-Ch composites showed the presence of a porous surface and OH- and C=O functional groups. A mechanism for the extraction of copper cations due to physical sorption of the porous surface by GO-Ch composites, and due to chemisorption processes by functional groups, was proposed. The sorption properties for methylene blue and iodine absorption, and the specific surface area of the GO-Ch samples, were determined. The spent sorbent is proposed to be used as a soil improver.

Funder

This research was conducted by Peter the Great St. Petersburg Polytechnic University and supported under the strategic academic leadership program “Priority 2030” of the Russian Federation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3