No Ontogenetic Shifts in C-, N- and P-Allocation for Two Distinct Tree Species along Elevational Gradients in the Swiss Alps

Author:

Liu Jian-FengORCID,Jiang Ze-Ping,Schaub Marcus,Gessler Arthur,Ni Yan-Yan,Xiao Wen-Fa,Li Mai-HeORCID

Abstract

Most of our knowledge about forest responses to global environmental changes is based on experiments with seedlings/saplings grown in artificially controlled conditions. We do not know whether this knowledge will allow us to upscale to larger and mature trees growing in situ. In the present study, we used elevation as a proxy of various environmental factors, to examine whether there are ontogenetic differences in carbon and nutrient allocation of two major treeline species (Pinus cembra L. and Larix decidua Mill.) along elevational gradients (i.e., environmental gradient) in the Swiss alpine treeline ecotone (~300 m interval). Young and adult trees grown at the same elevation had similar levels of non-structural carbohydrates (NSCs), total nitrogen (TN), and phosphorus (TP), except for August leaf sugars and August leaf TP in P. cembra at the treeline. We did not detect any interaction between tree age and elevation on tissue concentration of NSCs, TN, and TP across leaf, shoot, and root tissues for both species, indicating that saplings and mature trees did not differ in their carbon and nutrient responses to elevation (i.e., no ontogenetic differences). With respect to carbon and nutrient allocation strategies, our results show that young and adult trees of both deciduous and evergreen tree species respond similarly to environmental changes, suggesting that knowledge gained from controlled experiments with saplings can be upscaled to adult trees, at least if the light is not limited. This finding advances our understanding of plants’ adaptation strategies and has considerable implications for future model-developments.

Funder

the Fundamental Research Funds for the Central Non-profit Research Institution of CAF

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3