Deep Learning-Based Automatic Clutter/Interference Detection for HFSWR

Author:

Zhang Ling,You Wei,Wu Q.,Qi Shengbo,Ji YonggangORCID

Abstract

High-frequency surface wave radar (HFSWR) plays an important role in wide area monitoring of the marine target and the sea state. However, the detection ability of HFSWR is severely limited by the strong clutter and the interference, which are difficult to be detected due to many factors such as random occurrence and complex distribution characteristics. Hence the automatic detection of the clutter and interference is an important step towards extracting them. In this paper, an automatic clutter and interference detection method based on deep learning is proposed to improve the performance of HFSWR. Conventionally, the Range-Doppler (RD) spectrum image processing method requires the target feature extraction including feature design and preselection, which is not only complicated and time-consuming, but the quality of the designed features is bound up with the performance of the algorithm. By analyzing the features of the target, the clutter and the interference in RD spectrum images, a lightweight deep convolutional learning network is established based on a faster region-based convolutional neural networks (Faster R-CNN). By using effective feature extraction combined with a classifier, the clutter and the interference can be automatically detected. Due to the end-to-end architecture and the numerous convolutional features, the deep learning-based method can avoid the difficulty and absence of uniform standard inherent in handcrafted feature design and preselection. Field experimental results show that the Faster R-CNN based method can automatically detect the clutter and interference with decent performance and classify them with high accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference23 articles.

1. A review of high frequency surface wave radar for detection and tracking of ships

2. Short-Term forecasting of coastal surface currents using high frequency radar data and artificial neural networks;Li;Remote Sens.,2018

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3