Author:
Li Xiaoyan,Zhang Lefei,You Jane
Abstract
Hyperspectral image (HSI) classification is a widely used application to provide important information of land covers. Each pixel of an HSI has hundreds of spectral bands, which are often considered as features. However, some features are highly correlated and nonlinear. To address these problems, we propose a new discrimination analysis framework for HSI classification based on the Two-stage Subspace Projection (TwoSP) in this paper. First, the proposed framework projects the original feature data into a higher-dimensional feature subspace by exploiting the kernel principal component analysis (KPCA). Then, a novel discrimination-information based locality preserving projection (DLPP) method is applied to the preceding KPCA feature data. Finally, an optimal low-dimensional feature space is constructed for the subsequent HSI classification. The main contributions of the proposed TwoSP method are twofold: (1) the discrimination information is utilized to minimize the within-class distance in a small neighborhood, and (2) the subspace found by TwoSP separates the samples more than they would be if DLPP was directly applied to the original HSI data. Experimental results on two real-world HSI datasets demonstrate the effectiveness of the proposed TwoSP method in terms of classification accuracy.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献