Abstract
Satellite altimetry provides exceptional means for absolute and undisputable monitoring of changes in sea level and inland waters (rivers and lakes), over regional to global scales, with accuracy and with respect to the center of mass of the Earth. Altimetry system’s responses have to be continuously monitored for their quality, biases, errors, drifts, etc. with calibration. Absolute calibration of altimeters is achieved by external and independent to satellite facilities on the ground. This is the mainstay for a continuous, homogenous, and reliable monitoring of the earth and its oceans. This paper describes the development of the Permanent Facility for Altimetry Calibration in Gavdos/Crete, Greece, as of 2001 along with its infrastructure and instrumentation. Calibration results are presented for the reference missions of Jason-1, Jason-2, and Jason-3. Then, this work continues with the determination of relative calibrations with respect to reference missions for Sentinel-3A, HY-2A, and SARAL/AltiKa. Calibration results are also given for Jason-2 and Jason-3 altimeters using the transponder at the CDN1 Cal/Val site on the mountains of Crete, with simultaneous comparisons against sea-surface calibration and during their tandem mission. Finally, the paper presents procedures for estimating uncertainties for altimeter calibration to meet the Fiducial Reference Measurement standards.
Subject
General Earth and Planetary Sciences
Reference63 articles.
1. Earth Observation for Climate Change: A Report of the CSIS Technology and Public Policy Program. Center for Strategic and International Studies 2010
https://goo.gl/xB6OyX
2. The role of satellite remote sensing in climate change studies
3. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure
4. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings
5. Satellite Altimetry for monitoring lake level changes;Cretaux,2005
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献