Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology

Author:

Gallo Bruna,Demattê José,Rizzo Rodnei,Safanelli José,Mendes Wanderson,Lepsch Igo,Sato Marcus,Romero Danilo,Lacerda Marilusa

Abstract

The mapping of soil attributes provides support to agricultural planning and land use monitoring, which consequently aids the improvement of soil quality and food production. Landsat 5 Thematic Mapper (TM) images are often used to estimate a given soil attribute (i.e., clay), but have the potential to model many other attributes, providing input for soil mapping applications. In this paper, we aim to evaluate a Bare Soil Composite Image (BSCI) from the state of São Paulo, Brazil, calculated from a multi-temporal dataset, and study its relationship with topsoil properties, such as soil class and geology. The method presented detects bare soil in satellite images in a time series of 16 years, based on Landsat 5 TM observations. The compilation derived a BSCI for the agricultural sites (242,000 hectare area) characterized by very complex geology. Soil properties were analyzed to calibrate prediction models using 740 soil samples (0–20 cm) collected of the area. Partial least squares regression (PLSR) based on the BSCI spectral dataset was performed to quantify soil attributes. The method identified that a single image represents 7 to 20% of bare soil while the compilation of the multi-temporal dataset increases to 53%. Clay content had the best soil attribute prediction estimates (R2 = 0.75, root mean square error (RMSE) = 89.84 g kg−1, and accuracy = 74%). Soil organic matter, cation exchange capacity and sandy soils also achieved moderate predictions. The BSCI demonstrates a strong relationship with legacy geological maps detecting variations in soils. From a single composite image, it was possible to use spectroscopy to evaluate several environmental parameters. This technique could greatly improve soil mapping and consequently aid several applications, such as land use planning, environmental monitoring, and prevention of land degradation, updating legacy surveys and digital soil mapping.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3