Abstract
Sand dune advances poses a major threat to inhabitants and local authorities in the area of Nouakchott, Mauritania. Despite efforts to control dune mobility, accurate and adequate local studies are still needed to tackle sand encroachment. We have developed a Sand Dune Encroachment Vulnerability Index (SDEVI) to assess Nouakchott’s vulnerability to sand dune encroachment. Said index is based on the geo-physical characteristics of the area (wind direction and intensity, slope and surface height, land use, vegetation or soil properties) with Geographic Information System (GIS) techniques that can support local authorities and decision-makers in implementing preventive measures or reducing impact on the population and urban infrastructures. In order to validate this new index, we use two remote sensing approaches: optical-Sentinel 2 and Synthetic Aperture Radar (SAR)–Sentinel 1 data. Results show that the greatest vulnerability is located in the north-eastern part of Nouakchott, where local conditions favor the advance of sand in the city, although medium to high values are also found in the eastern part. Optical images enabled us to distinguish desert sand using the ratio between near infrared/blue bands, and SAR Coherence Change Detection (CCD) imagery was used to assess the degree of stability of those sand bodies. The nature of the SDEVI index allows us to currently assess which areas are vulnerable to sand encroachment since we use long data records. Nevertheless, optical and SAR remote sensing allow sand evolution to be monitored on a near real-time basis.
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献