Mining Hard Negative Samples for SAR-Optical Image Matching Using Generative Adversarial Networks

Author:

Hughes Lloyd,Schmitt Michael,Zhu Xiao

Abstract

In this paper, we propose a generative framework to produce similar yet novel samples for a specified image. We then propose the use of these images as hard-negatives samples, within the framework of hard-negative mining, in order to improve the performance of classification networks in applications which suffer from sparse labelled training data. Our approach makes use of a variational autoencoder (VAE) which is trained in an adversarial manner in order to learn a latent distribution of the training data, as well as to be able to generate realistic, high quality image patches. We evaluate our proposed generative approach to hard-negative mining on a synthetic aperture radar (SAR) and optical image matching task. Using an existing SAR-optical matching network as the basis for our investigation, we compare the performance of the matching network trained using our approach to the baseline method, as well as to two other hard-negative mining methods. Our proposed generative architecture is able to generate realistic, very high resolution (VHR) SAR image patches which are almost indistinguishable from real imagery. Furthermore, using the patches as hard-negative samples, we are able to improve the overall accuracy, and significantly decrease the false positive rate of the SAR-optical matching task—thus validating our generative hard-negative mining approaches’ applicability to improve training in data sparse applications.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shared contents alignment across multiple granularities for robust SAR-optical image matching;Information Fusion;2024-06

2. Optical image and SAR image registration based on position constraint;Fourth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2023);2024-01-23

3. Beyond Supervised Learning in Remote Sensing: A Systematic Review of Deep Learning Approaches;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Multimodal image matching: A scale-invariant algorithm and an open dataset;ISPRS Journal of Photogrammetry and Remote Sensing;2023-10

5. A Generic, Multimodal Geospatial Data Alignment System for Aerial Navigation;Remote Sensing;2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3