Effect of Cu(NO3)2 and Cu(CH3COO)2 Activating Additives on Combustion Characteristics of Anthracite and Its Semi-Coke

Author:

Larionov Kirill,Slyusarskiy Konstantin,Tsibulskiy SvyatoslavORCID,Tolokolnikov Anton,Mishakov Ilya,Bauman YuryORCID,Vedyagin AlekseyORCID,Gromov AlexanderORCID

Abstract

The process of anthracite and its semi-coke combustion in the presence of 5 wt.% (in terms of dry salt) additives of copper salts Cu(NO3)2 and Cu(CH3COO)2 was studied. The activating additives were introduced by an incipient wetness procedure. The ignition and combustion parameters for coal samples were examined in the combustion chamber at the heating medium temperatures (Tg) of 600–800 °C. The composition of the gaseous combustion products was controlled using an on-line gas analyzer. The fuel modification with copper salts was found to reduce the ignition delay time on average, along with a drop in the minimum ignition temperature Tmin by 138–277 °C. With an increase in Tg temperature, a significant reduction in the ignition delay time for the anthracite and semi-coke samples (by a factor of 6.7) was observed. The maximum difference in the ignition delay time between the original and modified samples of anthracite (ΔTi = 5.5 s) and semi-coke (ΔTi = 5.4 s) was recorded at a Tg temperature of 600 °C in the case of Cu(CH3COO)2. The emergence of micro-explosions was detected at an early stage of combustion via high-speed video imaging for samples modified by copper acetate. According to the on-line gas analysis data, the addition of copper salts permits one to reduce the volume of CO formed by 40% on average, providing complete oxidation of the fuel to CO2. It was shown that the introduction of additives promoted the reduction in the NOx emissions during the combustion of the anthracite and semi-coke samples.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3