Abstract
Nowadays, the integration of renewable energy sources, especially grid-connected photovoltaic, into electrical power systems, is increasing dramatically. There are several stimulants especially in the Java-Bali power system, including huge solar potential, a national renewable energy (RE) target, regulation support for prosumers, photovoltaic technology development, and multi-year power system planning. However, significant annual photovoltaic penetration can lead to critical issues, including a drop of netload during the day, ramping capability, and minimal load operation for thermal power plants. This study analyses the duck curve phenomenon in the Java-Bali power system that considers high shares of the baseload power plant and specific scenarios in photovoltaic (PV) penetration and electricity demand growth. This study also analyses future netload, need for fast ramping rate capability, and oversupply issues in the Java-Bali power system. The results showed that the duck curve phenomenon appears with a significant netload drop in the middle of the day because of high power generation from grid-connected PV. Furthermore, the need for fast ramp rate capability is critical for a higher peak load combined with the lowest netload valley. Moreover, the significant load growth with high grid-connected PV penetration level caused unit commitment issues for thermal power plants as baseload operators.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献