Abstract
Failures of the gas turbine hot components often cause catastrophic consequences. Early fault detection can detect the sign of fault occurrence at an early stage, improve availability and prevent serious incidents of the plant. Monitoring the variation of exhaust gas temperature (EGT) is an effective early fault detection method. Thus, a new gas turbine hot components early fault detection method is developed in this paper. By introducing a priori knowledge and quantum particle swarm optimization (QPSO), the exhaust gas temperature profile continuous distribution model is established with finite EGT measuring data. The method eliminates influences of operating and ambient condition changes and especially the gas swirl effect. The experiment reveals the presented method has higher fault detection sensitivity.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献