Data-Driven Machine-Learning Methods for Diabetes Risk Prediction

Author:

Dritsas EliasORCID,Trigka MariaORCID

Abstract

Diabetes mellitus is a chronic condition characterized by a disturbance in the metabolism of carbohydrates, fats and proteins. The most characteristic disorder in all forms of diabetes is hyperglycemia, i.e., elevated blood sugar levels. The modern way of life has significantly increased the incidence of diabetes. Therefore, early diagnosis of the disease is a necessity. Machine Learning (ML) has gained great popularity among healthcare providers and physicians due to its high potential in developing efficient tools for risk prediction, prognosis, treatment and the management of various conditions. In this study, a supervised learning methodology is described that aims to create risk prediction tools with high efficiency for type 2 diabetes occurrence. A features analysis is conducted to evaluate their importance and explore their association with diabetes. These features are the most common symptoms that often develop slowly with diabetes, and they are utilized to train and test several ML models. Various ML models are evaluated in terms of the Precision, Recall, F-Measure, Accuracy and AUC metrics and compared under 10-fold cross-validation and data splitting. Both validation methods highlighted Random Forest and K-NN as the best performing models in comparison to the other models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference73 articles.

1. Diabetes: a 21st century challenge

2. Type 1 diabetes

3. Type 2 diabetes

4. Gestational diabetes mellitus

5. Know the signs and symptoms of diabetes;Ramachandran;Indian J. Med Res.,2014

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient classification framework for Type 2 Diabetes incorporating feature interactions;Expert Systems with Applications;2024-04

2. Obesity disease risk prediction using machine learning;International Journal of Data Science and Analytics;2024-01-04

3. Diabetes Prediction Using Machine Learning: A Detailed Insight;Computational Sciences and Sustainable Technologies;2024

4. Analysis of blood glucose monitoring – a review on recent advancements and future prospects;Multimedia Tools and Applications;2023-12-21

5. Classification Algorithms for Liver Epidemic Identification;EAI Endorsed Transactions on Pervasive Health and Technology;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3