Low-Frequency Road Noise of Electric Vehicles Based on Measured Road Surface Morphology

Author:

Yu ZhenqiORCID,Cheng Dong,Huang Xingyuan

Abstract

In this paper, the noise vibration harshness (NVH) road surface morphology of a test site is scanned to establish a data processing system for the road surface, which can be used to transform the road surface morphology into the road surface excitation required for the road noise simulation analysis. The road surface morphology of the test site is used as the excitation input of the simulation analysis. The results obtained from the simulation analysis are equivalent to the experimental results. Using the actual scanning road surface morphology to simulate the excitation of a vehicle, the noise, as well as the vibration response of the vehicle under the actual road excitation of NVH in the early stage of vehicle development, can be accurately predicted. In the physical prototype stage, the rectification of vehicle road noise and the optimization to provide the needed excitation for the simulation analysis can be done, which will reduce the labor costs of the relevant experiment. Therefore, this method of road noise research has important engineering significance.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference25 articles.

1. Research Progress on Vehicle NVH Technology

2. NVH analysis and improvement of a vehicle body structure using DOE method

3. Tire/road noise-a subject of international concern;Sandberg,1988

4. Control and path analysis of airborne noise of fuel cell vehicle;Guo;J. Jiangsu Univ. (Nat. Sci. Ed.),2011

5. Acoustic classification of road pavements: ranking differences due to distance from the road

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3