Role of Distinct Macrophage Populations in the Development of Heart Failure in Macrophage Activation Syndrome

Author:

Kuna JakubORCID,Żuber ZbigniewORCID,Chmielewski GrzegorzORCID,Gromadziński LeszekORCID,Krajewska-Włodarczyk MagdalenaORCID

Abstract

Macrophage activation syndrome (MAS) is one of the few entities in rheumatology with the potential to quickly cause multiple organ failure and loss of life, and as such, requires urgent clinical intervention. It has a broad symptomatology, depending on the organs it affects. One especially dangerous aspect of MAS’s course of illness is myocarditis leading to acute heart failure and possibly death. Research in recent years has proved that macrophages settled in different organs are not a homogenous group, with particular populations differing in both structure and function. Within the heart, we can determine two major groups, based on the presence of the C-C 2 chemokine receptor (CCR2): CCR2+ and CCR2−. There are a number of studies describing their function and the changes in the population makeup between normal conditions and different illnesses; however, to our knowledge, there has not been one touching on the matter of changes occurring in the populations of heart macrophages during MAS and their possible consequences. This review summarizes the most recent knowledge on heart macrophages, the influence of select cytokines (those particularly significant in the development of MAS) on their activity, and both the immediate and long-term consequences of changes in the makeup of specific macrophage populations—especially the loss of CCR2− cells that are responsible for regenerative processes, as well as the substitution of tissue macrophages by the highly proinflammatory CCR2+ macrophages originating from circulating monocytes. Understanding the significance of these processes may lead to new discoveries that could improve the therapeutic methods in the treatment of MAS.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3