Augmentation of Transcriptomic Data for Improved Classification of Patients with Respiratory Diseases of Viral Origin

Author:

Kircher Magdalena,Chludzinski Elisa,Krepel Jessica,Saremi Babak,Beineke Andreas,Jung KlausORCID

Abstract

To better understand the molecular basis of respiratory diseases of viral origin, high-throughput gene-expression data are frequently taken by means of DNA microarray or RNA-seq technology. Such data can also be useful to classify infected individuals by molecular signatures in the form of machine-learning models with genes as predictor variables. Early diagnosis of patients by molecular signatures could also contribute to better treatments. An approach that has rarely been considered for machine-learning models in the context of transcriptomics is data augmentation. For other data types it has been shown that augmentation can improve classification accuracy and prevent overfitting. Here, we compare three strategies for data augmentation of DNA microarray and RNA-seq data from two selected studies on respiratory diseases of viral origin. The first study involves samples of patients with either viral or bacterial origin of the respiratory disease, the second study involves patients with either SARS-CoV-2 or another respiratory virus as disease origin. Specifically, we reanalyze these public datasets to study whether patient classification by transcriptomic signatures can be improved when adding artificial data for training of the machine-learning models. Our comparison reveals that augmentation of transcriptomic data can improve the classification accuracy and that fewer genes are necessary as explanatory variables in the final models. We also report genes from our signatures that overlap with signatures presented in the original publications of our example data. Due to strict selection criteria, the molecular role of these genes in the context of respiratory infectious diseases is underlined.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3