LC-MS Analysis Revealed the Significantly Different Metabolic Profiles in Spent Culture Media of Human Embryos with Distinct Morphology, Karyotype and Implantation Outcomes

Author:

Eldarov Chupalav,Gamisonia AlinaORCID,Chagovets Vitaliy,Ibragimova Luiza,Yarigina Svetlana,Smolnikova Veronika,Kalinina Elena,Makarova Nataliya,Zgoda VictorORCID,Sukhikh Gennady,Bobrov Mikhail

Abstract

In this study we evaluated possible differences in metabolomic profiles of spent embryo culture media (SECM) of human embryos with distinct morphology, karyotype, and implantation outcomes. A total of 153 samples from embryos of patients undergoing in vitro fertilization (IVF) programs were collected and analyzed by HPLC-MS. Metabolomic profiling and statistical analysis revealed clear clustering of day five SECM from embryos with different morphological classes and karyotype. Profiling of day five SECM from embryos with different implantation outcomes showed 241 significantly changed molecular ions in SECM of successfully implanted embryos. Separate analysis of paired SECM samples on days three and five revealed 46 and 29 molecular signatures respectively, significantly differing in culture media of embryos with a successful outcome. Pathway enrichment analysis suggests certain amino acids, vitamins, and lipid metabolic pathways to be crucial for embryo implantation. Differences between embryos with distinct implantation potential are detectable on the third and fifth day of cultivation that may allow the application of culture medium analysis in different transfer protocols for both fresh and cryopreserved embryos. A combination of traditional morphological criteria with metabolic profiling of SECM may increase implantation rates in assisted reproductive technology programs as well as improve our knowledge of the human embryo metabolism in the early stages of development.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3