Abstract
Candida antarctica lipase B (CalB) enzyme was encapsulated and cross-linked by silica matrix to enhance its thermal stability and reusability, and demonstrated an enzymatic ability for rapid hydrolysis and esterification. Silica encapsulated CalB particles (Si-E-CPs) and silica cross-linked CalB particles (Si-CL-CPs) were prepared as a function of TEOS concentration. The particle size analysis, thermal stability, catalytic activity in different pHs, and reusability of Si-E-CPs and Si-CL-CPs were demonstrated. Furthermore, the determination of the CalB enzyme in Si-E-CPs and Si-CL-CPs was achieved by Bradford assay and TGA analysis. Enzymatic hydrolysis was performed against the p-nitrophenyl butyrate and the catalytic parameters (Km, Vmax, and Kcat) were calculated by the Michaelis–Menten equation and a Lineweaver–Burk plot. Moreover, enzymatic synthesis for benzyl benzoate was demonstrated by esterification with an acyl donor of benzoic acid and two acyl donors of benzoic anhydride. Although the conversion efficiency of Si-CL-CPs was not much higher than that of native CalB, it has an efficiency of 91% compared to native CalB and is expected to be very useful because it has high thermal and pH stability and excellent reusability.
Funder
Rural Development Administration
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献