Sustainable Soilless Cultivation Mode: Cultivation Study on Droplet Settlement of Plant Roots under Ultrasonic Aeroponic Cultivation

Author:

Yang XiwenORCID,Luo Yahui,Jiang Ping

Abstract

In order to solve the effects of environmental factors on the droplet settlement of a nutrient solution on plant roots when planting plants with ultrasonic aeroponic cultivation, this study aimed to obtain a suitable wind speed range and atomization time through a nutrient solution atomization experiment, to obtain the best control scheme through a multi-environmental parameter combination cultivation experiment. Taking an ultrasonic aeroponic cultivation device as the research object, and lettuce as the test material, experiments were carried out on two factors affecting the wind speed of an axial fan and the atomization time of the nutrient amount of ultrasonic aeroponic cultivation plants; the suitable wind speed range was 1.0–2.5 m/s. The temperatures of the lettuce root zones in the upper, middle, and lower layers of the ultrasonic aeroponic cultivation device at different time periods were obtained by atomizing the nutrient solution. When the optimum temperature for the root growth of lettuce was 15–20 °C and the wind speed was 1.0–2.5 m/s, the continuous atomization time of the nutrient solution was 66–184 min. Using a quadratic orthogonal rotation combination design method, three main factors, namely wind speed, ambient temperature, and atomization time, were selected to test droplet settlement in the lettuce roots. The droplet settlement in the lettuce root system was measured. The droplet settlement regression equation in the lettuce root system was established. The reliability of the regression model was tested according to the significance condition, and a simplified quadratic orthogonal regression equation was obtained. The main effect analysis, single factor analysis, and interaction effect analysis were used to analyze the model, and the model was further verified. The verification results showed that the relative error between the predicted value and the actual value of the average root droplet sedimentation was 5.8%. The optimum wind speed was 2.5 m/s, the ambient temperature was 16 °C, and the atomization time was 184 min when the ultrasonic aeroponic cultivation device designed in this study was used to cultivate lettuce. It could provide a theoretical reference and an experimental basis for the control of the related growth environment parameters of plants cultivated using ultrasonic aeroponic cultivation.

Funder

the China Key Research and Development Plan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3