Abstract
Tropospheric ozone is a harmful air pollutant and greenhouse gas that adversely affects living organisms. The effect of long-term ozone stress on the activity of SOD, APX, and GuPX, as well as lipid peroxidation and membrane injury in bean and petunia growing at a city site and in a forest, characterised by different ozone concentrations, was examined. The experiments were conducted in three growing seasons with different tropospheric ozone concentrations and meteorological conditions. Plants’ exposition to increased ozone concentration resulted in enhanced activity of antioxidant enzymes, level of lipid peroxidation, and membrane injury. In all years, higher ozone levels and solar radiation were observed at the forest site. The pattern of the changes in enzyme activity was dependent on ozone concentrations as well as on environmental conditions and varied from year to year. In the second year with the highest ozone concentration, the activity of GuPX and SOD increased the most. However, despite higher ozone concentration in the forest, a larger increase in APX and SOD activity in both species and GuPX activity in bean was recorded at the city site. The present results revealed that plant response to ozone might vary in different locations not only due to differences in ozone concentration but also because of the impact of other environmental factors, such as solar radiation and temperature.
Funder
Ministry of Science and Higher Education
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction